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On the Monitoring of Simple Linear
Berkson Profiles
Yi-Hua Tina Wang and Longcheen Huwang*,†
We consider the quality of a process, which can be characterized by a simple linear Berkson profile. One existing approach
for monitoring the simple linear profile and two new proposed schemes are studied for charting the simple linear Berkson
profile. Simulation studies demonstrate the effectiveness and efficiency of one of the proposed monitoring schemes. In
addition, a systematic diagnostic approach is provided to spot the change point location of the process and to identify
the parameter of change in the profile. Finally, an example from semiconductor manufacturing is used to illustrate the
implementation of the proposed monitoring scheme and diagnostic approach. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

S
tatistical process control (SPC) has been successfully applied in a variety of industries. In most SPC applications, the quality of a
process can be adequately represented by the distribution of a quality characteristic. However, in many applications, the quality
of a process or product may be better characterized by a relationship (or profile) between the response variable and one or more

explanatory variables; that is, the main topic is on monitoring the profile that describes such a relationship, instead of on monitoring a
single quality characteristic. Particularly, most studies focused on the simple linear profiles. An extensive discussion of research
problems on this topic has been provided by Woodall et al.1

Kang and Albin2 proposed two kinds of control charting schemes for monitoring the simple linear profiles in Phase I and Phase II.
One is a multivariate T2 chart and the other is the combination of a exponentially weighted moving average (EWMA) chart and a
range (R) chart. Kim et al.3 proposed using a combination of three EWMA charts to, respectively, detect a shift in the intercept, slope,
and standard deviation simultaneously in Phase II. They also suggested using similar Shewhart-type control charts for monitoring
simple linear profiles in Phase I. Gupta et al.4 compared the performance of the control charts proposed by Croarkin and Varner5

and Kim et al.3 for monitoring simple linear profiles in Phase II. They concluded that the combined EWMA charts of Kim et al.3 are
superior to Croarkin and Varner’s5 charting scheme. Mahmoud and Woodall6 studied several control charting schemes for monitoring
simple linear profiles in Phase I. Zou et al.7 proposed a control charting scheme based on a change point model for monitoring simple
linear profiles where the process parameters are unknown but can be estimated from the in-control historical data. On the basis of
likelihood ratio statistics, Mahmoud et al.8 proposed a change point method for monitoring sustained shifts in a simple linear profile
in Phase I. Zou et al.9 used a self-starting control chart for monitoring simple linear profiles when the process parameters are unknown
but some in-control data in Phase I are available. For monitoring general linear profiles, Zou et al.10 applied an MEWMA single chart to
the transformations of estimated profile parameters in Phase II. More studies related to monitoring linear profiles can be found in the
literature (see e.g. Jensen et al.,11 Mestek et al.,12 Stover and Brill,13 and Lawless et al.14).

In many practical situations, the profile cannot be represented adequately by a linear model. Walker and Wright15 and Woodall
et al.1 studied the vertical density profile, which apparently cannot be represented by a linear profile. Williams et al.16 developed three
general approaches to the formulation of T2 statistics based on nonlinear model approach in Phase I. Colosimo and Pacella17 used
principal component analysis to identify systematic patterns in roundness profiles. Williams et al.18 used data from DuPont to monitor
dose–response profiles used in high-throughput screening based on the nonlinear model approach of Williams et al.16, in which a
four-parameter logistic regression model was used to represent the profiles. Jin and Shi19 used dimension-reduction techniques to
study a stamping tonnage profile, which apparently is a nonlinear profile. Lada et al.20 and Ding et al.21 used dimension–reduction
techniques, including wavelet and independent component analysis to study a general category of nonlinear profiles.
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Recently, Zou et al.22 integrated an MEWMA procedure with a generalized likelihood ratio test (Fan et al.23) based on local linear
regression of Fan and Gijbels24 to monitor a general smooth regression profile. Qiu et al.25 proposed monitoring smooth profiles,
which can be described by a nonparametric mixed-effects model to account for the within-profile correlation.

In this article, we focus on a study of Phase II method for monitoring a simple linear regression-like profile which can be well repre-
sented by a simple linear Berkson Model. To be specific, assume that for the jth random sample collected overtime, we have the
observations (xij, yij), where yij is the response variable and xij is the controllable variable. For each controllable variable xij, there exists
a latent variable xij, which equals xij minus a random error dij, that has a linear relationship with the response variable yij. Precisely, the
underlying model is as follows:

yij ¼ A0 þ A1xij þ eij;
xij ¼ xij þ dij; i ¼ 1; 2;⋯; n; j ¼ 1; 2;⋯;

(1)

where xij is the unobserved latent variable. The controllable variable xij is usually the assigned value of an experiment and hence is the
same for different j. In the article, we will use xi to replace xij for brevity. The variable dij represents the random error between the
controllable variable xi and the latent variable xij, which is independent of xi and eij. Furthermore, it is assumed that
eij �i:i:d: N 0; s2e

� �
and dij �i:i:d: N 0;s2d

� �
. Equation (1) is called the simple linear Berkson model, which was first proposed by Berkson.26

Without further assumptions, it is obvious that the parameters A0, A1, s2e , and s2d in Equation (1) cannot be estimated consistently. To
identify Equation (1), it is usually assumed that the variance of dij, s2d, is known a priori, or it can be independently estimated by certain
extra data. Throughout this article, we assume that s2d is a known constant, not a parameter.

A model, which can also be formulated by Equation (1), is called the simple linear measurement error model. However, the simple
linear Berkson model and the simple linear measurement error model are remarkably different. In the former model, the random error
dij is independent of the controllable variable xi, whereas in the later model the random error dij is correlated with the observable vari-
able xij (note that xij is different for different j in the simple linear measurement error model). The simple linear Berkson model is useful
and can be applied in many different applications including engineering, agriculture, medical study, and so forth. For example,
assume that we are conducting an experiment on the quality of cement being created in a continuous mixing operating. Assume that
the quality of cement is a linear function of the amount of water used in the mixture. We can set the reading on the dial of a water
valve controlling water entering the mixture. However, because of random fluctuations in water pressure, the amount of water actu-
ally delivered per unit of time is not that set on the dial, and it is not accessible either. Thus, the true amount of water is equal to the
amount set on the water dial minus a random error. If the dial has been calibrated properly, the average of the random error is zero. It
is also commonly assumed that the random error has a normal distribution. As a result, the above problem should be better described
by the simple linear Berkson Equation (1), instead of the simple linear model. Another example of the simple linear Berkson Equation
(1) is yield of corn and total amount of nitrogen absorption. It can be shown roughly that the yield of corn has a linear relationship
with the total amount of nitrogen that the corn absorbs from soil. However, the true unobserved amount of nitrogen that has been
absorbed by the corn is quite different from the quantity of nitrogen that has been applied on per unit of land. Thus, it is better to use
the simple linear Berkson model to present the problem, instead of using the simple linear regression model. Berkson model has been
widely used in many different applications (see e.g. Rosner et al.,27 Rosner et al.,28 Tosteson et al.,29 and Schafer and Gilbert30).

In the article, the main purpose is to monitor the simple linear Berkson profile (Equation (1)). The rest of the article is organized as
follows. In Section 2, we review one existing method proposed by Zou et al.22 for monitoring the simple linear profiles that can be
used to monitor the simple linear Berkson profiles. We also present two new charting schemes for monitoring the simple linear Berk-
son profiles. Then, we compare the monitoring performance of the two proposed charts with that of Zou et al.22 in Section 3. In Sec-
tion 4, we provide a systematic method for profile diagnosis and evaluate the performance of the proposed estimate of change point
and the tests for identifying the parameter of change. In Section 5, we use an industrial example from semiconductor manufacturing,
which has a profile that fits a simple linear Berkson model well, to demonstrate, the step-by-step implementation of the proposed
approach. Conclusions and summaries are included in Section 6. Theoretical derivations are given in Appendix A.
2. Phase II monitoring

Substituting xi� dij for xij in Equation (1) and using the coded controllable values, we obtain the following alternative form of Equation (1):

yij ¼ B0 þ B1x
�
i þ e�ij ; i ¼ 1; 2;⋯; n; j ¼ 1; 2;⋯; (2)

where B0 ¼ A0 þ A1�x; B1 ¼ A1; x�i ¼ xi � �x; �x ¼Pn
i¼1xi=n; e

�
ij ¼ eij � B1dij �i:i:d: N 0;s2ð Þ; and s2 ¼ s2e þ B21s

2
d: Note that under the

assumptions of the simple linear Berkson Equation (1), the error term e�ij does not depend on the controllable values x�i . As a result,
Equation (2) itself can be treated as a simple linear model. However, the variance of the error term e�ij in Equation (2) has been aug-
mented from s2e , the variance of the error term eij in Equation (1), to s2 ¼ s2e þ B21s

2
d. It is worth noting that although the simple linear

Berkson Equation (1) can be treated as the simple linear Equation (2), the parameters which we are interested in detecting possible
changes are A0, A1, ands2e , not B0, B1, and s2. On the basis of some preliminary study, it does not seem very effective to directly monitor
the parameters A0, A1, and s2e in Equation (1). The reason is that the consistent estimators of A1 and s2e are not mutually independent.
As a result, for monitoring s2e , the control limits based on the consistent estimator of s2e depend on the values of A1 and s2d, and hence
the resulting charting scheme is not regression invariant. As an alternative, to monitor simple linear Berkson profile (1) that has three
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 949–965
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parameters A0, A1, and s2e to be controlled can be accomplished through monitoring the parameters B0, B1, and s2 in the simple linear
profile (2). This is the approach we will take in the rest of the article.

For the jth profile in the Phase II monitoring, j=1, 2,⋯, the least squares estimators for B0, B1, and s2 in Equation (2) are

B̂0j ¼ �yj; B̂1j ¼
Sxy jð Þ
Sxx

; and ŝj
2 ¼ 1

n� 2

Xn
i¼1

yij � B̂0j � B̂1jx
�
i

� �2
; (3)

where�yj ¼
Pn

i¼1yij=n; Sxx ¼
Pn

i¼1 xi � �xð Þ2; and Sxy jð Þ ¼
Pn

i¼1 xi � �xð Þyij:Note that the above three least squares estimators B̂0j; B̂1j, and
ŝj
2 are mutually independent, and it is also well known that control charting schemes based on these estimators are regression

invariant. In the following, we will present one existing chart and propose two new charting schemes on monitoring B0, B1, and s2

in Equation (2).
2.1. ZTW control chart

Zou et al.22 applied an MEWMA scheme to the transformations of estimated profile parameters to form a single chart for mon-

itoring both the coefficients and the variance of a general linear profile. In the simple linear Equation (2), let Zj ¼ Z1j; Z2j; Z3j
� �′

,

where Z1j ¼ B̂0j � B0
� �

=s, Z2j ¼ B̂1j � B1
� �

=s, and Z3j ¼ Φ�1 F n� 2ð Þŝ2
j =s

2; n� 2
h in o

. Here, Φ� 1(�) is the inverse of the standard

normal distribution function and F(�, n) is the distribution function of a chi-square random variable with n degrees of freedom.
One advantage of the scheme of Zou et al.22 is that only one single chart is used to monitor all of the profile parameters so
that the design and implementation of the monitoring scheme can be greatly simplified. Also, the variance transformation Z3j
has nice properties that its distribution is independent of the sample size n when the process is in control, and thus the choice
of its control limits will not be affected by n. This will help design the control chart easily in the case of variable sample size.
Note that this kind of variance transformation has been used in EWMA control charts proposed by Quesenberry31 and Chen
et al.32 When the process is in control, Zj is a three-dimensional multivariate normal distribution with mean 0 and covariance
matrix Σ=diag(1/n, 1/Sxx, 1). Zou et al.22 used the EWMA charting statistic

Wj ¼ lZj þ 1� lð ÞWj�1;

where W0 ¼ 0 and l, (0< l⩽ 1), is a smoothing constant. The control chart (designated as the ZTW control chart) signals if

Uj ¼ W′
jΣ

�1Wj > LZTW
l

2� lð Þ (4)

where LZTW> 0 is determined to achieve a desired in-control (IC) ARL. The ZTW control chart is a special application of MEWMA charts,
which were first proposed by Lowry et al.33
9
5
1

2.2. HWYC control charts

Huwang et al.34 proposed an EWMA chart as a way on monitoring variance of a univariate quality characteristic for individual obser-
vations. Here, we generalize the idea to propose an EWMA chart for monitoring the variance of the simple linear Equation (2) with
sample size n> 1. For monitoring the intercept and slope of the simple linear Equation (2), we adopt the two EWMA charts of Kim
et al.3 for these two parameters. Denote

EWMAI jð Þ ¼ lB̂0j þ 1� lð ÞEWMAI j � 1ð Þ

and

EWMAS jð Þ ¼ lB̂1j þ 1� lð ÞEWMAS j � 1ð Þ;

where EWMAI(0) = B0 and EWMAS(0) = B1. Consequently, the lower and upper control limits for the monitoring statistics B̂0j and B̂1j are

LCLI;UCLI ¼ B0 � LIs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2� lð Þn

s
(5)

and

LCLS;UCLS ¼ B1 � LSs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2� lð ÞSxx

s

respectively, where LI and LS are chosen to achieve a specified IC ARL. The three EWMA charts (denoted as the HWYC charts in the
article) will be used jointly, and the profile change is detected as one of the charts signals.
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 949–965
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Using the approach similar to Huwang et al.34, for the jth sample, we first define the EWMA statistic

EWMAw jð Þ ¼ l
n� 2ð Þŝ2

j

s2
þ 1� lð ÞEWMAw j � 1ð Þ

¼
Xj
i¼1

l 1� lð Þj�i n� 2ð Þŝ2
i

s2
þ 1� lð ÞjEWMAw 0ð Þ

where n� 2ð Þŝi2=s2 has a chi-square distribution with n� 2 degrees of freedom when the process is in control and EWMAw(0) = n� 2.
Using the result of Box35 (Theorem 3.1), the term EWMAw jð Þ � 1� lð Þj n� 2ð Þ

h i
l�1 ¼Pj

i¼1 1� lð Þj�i n� 2ð Þŝi2=s2 can be approxi-
mated by a gamma distribution with shape parameter qj/2 and scale parameter 2pj, where

pj ¼
Pj�1

i¼0 1� lð Þ2iPj�1
i¼0 1� lð Þi ¼

1þ 1� lð Þj
2� lð Þ

qj ¼
Pj�1

i¼0 n� 2ð Þ 1� lð Þi
h i2
Pj�1

i¼0 n� 2ð Þ 1� lð Þ2i ¼
n� 2ð Þ 2� lð Þ 1� 1� lð Þj

h i
l 1þ 1� lð Þj
h i

Further, it is well known (Lawless36) that the log transformation of a gamma distribution is approximately normally distributed. Thus,

Tj ¼ ln
EWMAw jð Þ � 1� lð Þj n� 2ð Þ

l

" #
� N E Tj

� �
;Var Tj

� �� �
;

where

E Tj
� � � ln pjqj

� �� 1

qj
� 1

3q2j
þ 2

15q4j
;

Var Tj
� � � 2

qj
þ 2

q2j
þ 4

3q3j
� 16

15q5j
:

Consequently, the lower and upper control limits for the monitoring statistic Tj are

LCLHWYC ¼ E Tj
� �� L1;HWYC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Tj
� �q

;

UCLHWYC ¼ E Tj
� �þ L2;HWYC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Tj
� �q

;
(6)

where L1,HWYC and L2, HWYC> 0 are chosen to achieve a specified IC ARL. The major difference between this approach and most of
others (e.g. Shu and Jiang37) for monitoring s2 is that up to the jth sample, the HWYC approach only uses two approximations to
establish the EWMA charting scheme, whereas usually j approximations are used for the other EWMA charts to develop the charting
scheme. The parsimonious use of approximation in deriving the monitoring statistic Tj is likely to lead to a more efficient control chart.
Huwang et al.34 used this approach to propose an EWMA chart to detect variance change of a univariate quality characteristic for indi-
vidual observations. Their ARL comparisons show that for monitoring increase in variance their EWMA chart is as good as the change
point CUSUM chart of Acosta-Mejia.38 On the other hand, for monitoring decrease in variance, their EWMA chart is uniformly better
than the change point CUSUM chart.

2.3. COM control charts

On the basis of some preliminary simulation studies, it is known that the transformation Z3j ¼ Φ�1 F n� 2ð Þŝ2
j =s

2; n� 2
h in o

used in

the ZTW chart is very efficient in detecting increase in variance s2 (see also Quesenberry31 and Chen et al.32). On the other hand, the
control chart for monitoring s2 defined in the HWYC charts is significantly better than other charts in detecting decrease in variance
s2 (Huwang et al.34). Thus, it is intuitive to combine these two one-sided charts as a two-sided chart for monitoring s2.

Define

EWMACþ jð Þ ¼ lZ3j þ 1� lð ÞEWMACþ j � 1ð Þ;

where EWMACþ 0ð Þ ¼ 0. Then this chart will detect an increase in s2 if

EWMACþ jð Þ > UCLCOM ¼ L2;COM

ffiffiffiffiffiffiffiffiffiffiffi
l

2� l

r
;

where L2,COM is chosen to achieve a specified IC ARL. As for monitoring decrease in s2, the monitoring statistic EWMAC� jð Þ ¼ Tj
defined in the HWYC charts is adopted with the corresponding lower control limit
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 949–965
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LCLCOM ¼ E Tj
� �� L1;COM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Tj
� �q

; (7)

where L1,COM is determined to achieve a desired IC ARL. Here, we combine two one-sided charts as a two-sided chart for monitoring
changes in s2. The combined EWMA chart for monitoring s2 will be jointly used with the two EWMA charts of Kim et al.3 (defined in
Section 2.2) for monitoring the intercept and slope to detect profile changes. The resulting charts will be called the COM control
charts throughout, and a profile change is triggered if any one of the charts signals.
3. Performance comparisons

In this section, we compare the performance of the three competing control charts for monitoring the simple linear Berkson profile
(Equation (1)) in terms of ARL. For simplicity, we only consider the zero-state out-of-control (OC) ARL. Assume that when the variance
of di, s2d , equals 0, the in-control simple linear Berkson profile is the same as the in-control simple linear model of Kang and Albin,2

where the parameters are A0 = 3, A1 = 2, s2e ¼ 1 and xi=2, 4, 6, 8. Here, the known variance s2d is considered to be 0.1 and 0.25, and
the smoothing constant for all EWMA charts is chosen to be 0.2 as consistent with the commonly used value in the literature. The over-
all IC ARL is roughly equal to 200 with equally distributed to all three EWMA charts for the intercept, slope, and variance. For example,
each separate EWMA chart of the COM scheme for monitoring the intercept B0, or the slope B1, or the variance s

2 in Equation (2) has the
same individual IC ARL and the two one-sided EWMA charts for monitoring increase and decrease in s2, respectively, also have the
same individual IC ARL.

Table I presents the L values for the three competing control charts when the overall IC ARL is approximately equal to 200 based on
20,000 Monte Carlo simulations. Note that the L values for all control charts do not vary with s2d because of regression invariance
property.

The OC ARLs of the three competing charts for detecting shifts in A0, A1, and se are given in Table II fors2d ¼ 0:1, which represents a
little difference between the controllable variable x and the latent variable x. When A0 is changed to A0 + cIse, except for cI= 0.1 or
� 0.1, the COM charts perform best among the three charts, but overall all charts have quite similar results. For detecting shifts in
A1, the ZTW chart is uniformly better than the other two charts although the results of all three charts are not significantly different
for larger shifts. Note that unlike in the simple linear profile where the ARL performance of a commonly used chart for detecting
increase or decrease in slope is approximately the same, it is not the case in the simple linear Berkson model because of the relation-
ship s2 ¼ s2e þ A21s

2
d . With increase shifts in se, the ZTW chart gives better results than the other two charts in all cases considered

especially for smaller increases. As for detecting decrease shifts in se, all control charts are biased procedures. A control chart is called
a biased procedure if it has the property that some OC ARL is greater than the IC ARL. Despite the undesirable bias of the HWYC charts
when the decrease shift is small, they are uniformly better than the ZTW chart, and the advantage is dramatic when the decrease shift
is large. On the other hand, the COM charts give the second best results and as expected the results are not remarkably different from
those of the HWYC charts. Note that it is possible to rectify bias of the HWYC charts (COM charts as well) by using two unequal-tailed
one-sided charts jointly to monitor the parameter se. However, it could be numerically cumbersome to search for two unequal-tailed
one-sided charts to make the combined chart unbiased (see e.g. Acosta-Mejia and Pignatiello Jr.39). As a result, unbiased charting
schemes are not pursued in the article. On the contrary, because the ZTW scheme uses a single chart to monitor all parameters
together, it is impossible to modify the ZTW chart to make it unbiased.

Table III presents the OC ARLs of the three competing charts for detecting shifts in A0, A1, and s2e for s
2
d ¼ 0:25, which represents a

slightly larger difference between the controllable variable x and the latent variable x. The results show that except for few cases in
detecting decrease shifts in s2e , all charts have larger OC ARLs for detecting the same shifts in A0, A1, and s2e as compared with their
counterparts in Table II, respectively. For detecting shifts in A0, the COM charts still give the best results in most cases, but the differ-
ences among the three charts are not significant. As for detecting shifts in A1, the ZTW chart performs slightly better than the other
two charts, but the results for all three charts do not have much difference when the shifts get larger. For detecting increase shifts in
se, the ZTW chart gives better results than the other two charts especially for smaller increases. As for detecting decrease shifts in se,
the HWYC charts are uniformly better than the other two charts, although all charts give OC ARLs greater than the IC ARL in some
cases. The results of the HWYC and COM charts are not remarkably different. On the contrary, both the HWYC and COM charts sig-
nificantly outperform the ZTW chart especially for larger decreases.
Table I. The L values for the three control charts when ARL0� 200

ZTW HWYC COM

ARL0 200.02 199.52 200.11
(0.88) (1.41) (1.42)

LZTW 11.855 LI 3.016 3.016
LS 3.011 3.011
Lþs 2.792 3.055
L�s 3.031 3.038

Parentheses contain the standard errors.
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Table II. OC ARLs of the three competing charts for A0!A0 + cIse, A1!A1 + cSse, and se! cese when s2d=0.1 in Equation (1)

cI

0.10 0.20 0.30 0.40 0.50 0.60 0.80 1.00 1.50 2.00
ZTW 145.07 75.48 39.70 23.48 15.50 11.18 7.02 5.11 3.11 2.31
HWYC 146.61 74.69 37.93 21.96 14.36 10.28 6.45 4.66 2.85 2.14
COM 146.93 74.60 37.91 21.91 14.34 10.28 6.45 4.66 2.85 2.14

�0.10 �0.20 �0.30 �0.40 �0.50 �0.60 �0.80 �1.00 �1.50 �2.00
ZTW 146.83 76.89 40.07 23.51 15.43 11.24 7.06 5.14 3.13 2.32
HWYC 148.03 75.99 38.35 22.18 14.35 10.33 6.46 4.71 2.87 2.15
COM 148.42 75.96 38.34 22.16 14.33 10.32 6.46 4.71 2.87 2.15

cS
0.025 0.0375 0.05 0.0625 0.075 0.10 0.125 0.15 0.20 0.25

ZTW 112.84 70.91 45.06 30.73 21.89 12.97 8.85 6.71 4.50 3.44
HWYC 115.80 72.84 46.54 31.30 22.44 13.27 9.07 6.81 4.56 3.47
COM 115.66 72.62 46.46 31.28 22.42 13.25 9.05 6.81 4.56 3.47

�0.025 �0.0375 �0.05 �0.0625 �0.075 �0.10 �0.125 �0.15 �0.20 �0.25
ZTW 120.00 75.99 48.62 32.66 22.88 13.35 9.10 6.82 4.57 3.47
HWYC 122.45 77.78 49.51 33.10 23.45 13.57 9.22 6.90 4.60 3.48
COM 122.77 77.82 49.47 33.09 23.42 13.56 9.22 6.90 4.60 3.48

ce
1.10 1.15 1.20 1.25 1.30 1.40 1.60 1.80 2.20 2.60

ZTW 99.78 69.58 49.58 36.75 28.14 18.37 10.02 6.78 4.10 2.96
HWYC 108.32 78.26 57.67 43.34 33.53 21.88 11.94 7.95 4.69 3.36
COM 106.16 75.84 55.00 40.96 31.39 20.40 11.12 7.43 4.46 3.22

0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50
ZTW 256.35 290.20 287.30 253.23 209.25 167.15 131.46 102.86 80.52 63.76
HWYC 238.79 238.03 194.97 140.10 94.99 65.10 45.49 33.17 25.14 19.70
COM 241.52 241.40 198.16 142.02 96.22 65.86 46.05 33.49 25.32 19.87

Table III. OC ARLs of the three competing charts for A0!A0 + cIse, A1!A1 + cSse, and se! cese when s2d=0.25 in Equation (1)

cI

0.10 0.20 0.30 0.40 0.50 0.60 0.80 1.00 1.50 2.00
ZTW 157.97 94.55 53.52 32.67 21.57 15.37 9.27 6.57 3.82 2.76
HWYC 159.65 94.58 52.11 31.01 20.19 14.24 8.54 6.03 3.50 2.54
COM 160.17 94.56 52.06 30.96 20.16 14.22 8.54 6.03 3.50 2.54

�0.10 �0.20 �0.30 �0.40 �0.50 �0.60 �0.80 �1.00 �1.50 �2.00
ZTW 159.40 95.87 54.65 32.90 21.61 15.34 9.35 6.59 3.84 2.78
HWYC 160.70 95.57 53.03 31.31 20.21 14.23 8.58 6.05 3.52 2.55
COM 161.59 95.67 52.98 31.28 20.17 14.21 8.58 6.05 3.52 2.55

cS
0.025 0.0375 0.05 0.0625 0.075 0.10 0.125 0.15 0.20 0.25

ZTW 126.76 86.83 58.03 40.69 29.67 17.42 11.78 8.67 5.66 4.23
HWYC 130.33 89.32 60.28 41.93 30.38 17.96 12.10 8.92 5.79 4.30
COM 130.42 88.94 60.01 41.80 30.32 17.93 12.08 8.90 5.79 4.30

�0.025 �0.0375 �0.05 �0.0625 �0.075 �0.10 �0.125 �0.15 �0.20 �0.25
ZTW 140.55 97.59 66.65 46.13 33.18 18.96 12.50 9.11 5.85 4.33
HWYC 141.78 99.17 68.14 47.01 33.67 19.32 12.66 9.23 5.89 4.34
COM 142.23 99.27 68.09 46.97 33.63 19.30 12.64 9.23 5.89 4.34

ce
1.10 1.15 1.20 1.25 1.30 1.40 1.60 1.80 2.20 2.60

ZTW 122.74 94.59 72.78 56.30 44.36 29.19 15.60 9.97 5.64 3.93
HWYC 130.84 103.81 81.36 64.96 51.99 34.61 18.51 11.87 6.59 4.49
COM 129.15 101.47 78.88 62.26 49.36 32.50 17.24 11.04 6.16 4.28

0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50
ZTW 239.16 273.33 291.29 291.98 279.26 254.99 229.51 202.65 179.66 158.30
HWYC 229.72 244.24 236.37 210.93 176.69 141.98 113.28 89.98 72.86 60.00
COM 231.81 247.12 240.19 214.32 179.27 144.36 114.73 91.27 73.84 60.67

Y. H. T. WANG AND L. HUWANG
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From the results of Tables II and III, we conclude that overall, the COM charts have the best performance for detecting shifts in A0;
the ZTW chart gives the best results for detecting shifts in A1; the ZTW chart performs better than the other two charts for detecting
increase shifts in se, but it has the worst performance for detecting decrease shifts in se; and the HWYC charts outperform the other
two charts for detecting decrease shifts in se, although they give poor results for detecting increase shifts in se. For detecting decrease
shifts in se, the results of the COM and HWYC charts are not remarkably different and the COM charts outperform the HWYC charts in
almost all other situations; consequently, in the following, only the COM charts and the ZTW chart will be compared as we consider
simultaneous shifts in two parameters.

To make performance comparisons in detecting simultaneous shifts in the intercept and slope consistent with those in the litera-
ture, here we consider the simultaneous shifts in the two parameters of B0, B1, and se instead of A0,A1, and se. Note that Kim et al.3 and
Zou et al.10 considered the same parameters B0 and B1 of the transformed simple linear model on monitoring simple linear profiles.
Table IV tabulates the OC ARLs of the ZTW chart and the COM charts for several simultaneous shifts in B0 and B1, B0 and se, and B1 and
se when s2d ¼ 0:1. With increase shifts in both B0 and B1, in some situations the ZTW chart is superior to the COM charts, whereas in
other situations the ZTW chart is inferior to the COM charts. Overall, their results are not appreciably different. As with increase shifts
in both B0 and se, except for the cases where cI⩽ 0.15 and ce⩽ 1.3 that the ZTW chart is noticeably better than the COM charts, the
results of both charts are not quite different in the other situations. For detecting the combination of an increase shift in B1 and a
decrease shift in se, the COM charts are uniformly better than the ZTW chart. In some situations, the advantage of the COM charts
over the ZTW chart is dramatic. For example, when cS= 0.025 and ce= 0.8, the OC ARL of the COM charts is 143.62, which is much
smaller than 235.31 of the ZTW chart. As for detecting the combination of a decrease shift in B1 and an increase shift in se, except
for few cases (cS⩾� 0.075 and ce⩽ 1.3) that the advantage of the ZTW chart over the COM charts is appreciable, in other situations
the results of both charts are not different much. For each of the other combinations of simultaneous shifts in two parameters,
the results (not reported here) are similar to those of one combination of simultaneous shifts in two parameters in Table IV. In
conclusion, if the simultaneous shifts do not contain a decrease in se, in a few cases the ZTW chart is slightly better than the
COM charts whereas in most cases the results of both charts are not appreciably different. On the other hand, if the simultaneous
shifts contain a decrease in se, the COM charts are uniformly better than the ZTW chart and the superiority is dramatic in some
cases. Furthermore, we also simulated the OC ARLs of the ZTW and COM charts for several simultaneous shifts in two parameters
for the situation that s2d ¼ 0:25. Under the same simultaneous shifts scenarios, both charts have larger OC ARLs as compared with
the results in the situation that s2d ¼ 0:1. However, the conclusions are quite similar to those of s2d ¼ 0:1. Hence the results are not
reported.

From the results in Tables 2–4, overall if both single shifts in one parameter and simultaneous shifts in two parameters are
considered, the COM charts are slightly preferable to the ZTW chart.
9
5
5

4. The diagnostic aids and implementation

In the practical quality applications, it is not only important to detect process change as soon as possible but also critical to diagnose
the change and identify which parameter or parameters in the model have shifted after an OC signal appeared. To search for the
change point and to identify the type of parameter change in the model, a diagnostic aid will help an engineer isolate and eliminate
the assignable causes of a problem fast and easily. In the following we, study the diagnosis of a simple linear Berkson model and pro-
pose a systematic diagnostic method to find the location of the change point and which parameters in the model that have shifted.

To find an estimate of the change point in a simple linear Berkson model, a maximum likelihood estimation approach is used. Once
an OC signal is found at sample k by a control chart, the estimate of the change point t of a sustained shift is given by

et ¼ argmax
0⩽t<k

lr tn; knð Þf g (8)

where lr(tn, kn) is the generalized likelihood ratio statistic. The definition of the term lr(tn, kn) and the derivation of the estimate et
are included in Appendix A. The generalized likelihood ratio test approach has been used for change point detection in general linear
models and nonparametric regression models in the literature of SPC (see e.g. Hawkins et al.,40 Hawkins and Zamba,41,42 Zou et al.,7

Zou et al.,9 Mahmoud et al.,8 Zou et al.,22 and Zou et al.10). Pignatiello and Samuel43 showed that the maximum likelihood method
performs much better than other methods for change point detection for a conventional process change. Note that to calculate
the estimate et in Equation (8), we have to find the maximum likelihood estimates of B0, B1, and s2e for 0⩽ t< k, respectively. Because

of the relationships2 ¼ s2e þ B21s
2
d, the maximum likelihood estimate ofs2e is not equal to ŝ

2 � B̂1
2s2d when the condition ŝ2 � B̂1

2s2d < 0

holds, where B̂1 and ŝ2 are the maximum likelihood estimates of B1 and s2, respectively. As a result, it is more complex and statistical
skill oriented to derive the result of Equation (8).

In the literature of Economics, there have been several studies on change point detection of a linear model using maximization of
the generalized likelihood ratio. The change points include changes of coefficient parameters and/or standard deviation in the model
(see e.g. Andrew,44 Bai,45 Csörgő and Horváth,46 Liu et al.,47 Bai,48 Bai and Perron49,50). Under more general assumptions than previous
studies, Qu and Perron51 used the approach of maximizing the generalized likelihood ratio to obtain the estimator(s) of change point
(s) in the general linear model. The limiting distribution of the estimator of the change point is obtained as well. Here, we use the
approach of Qu and Perron51 to show that
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 949–965



Table IV. OC ARLs of the ZTW chart (first row) and the COM charts (second row) under any two combinations of B0! B0 + cIse,
B1! B1 + cSse, and se! cese for s2d=0.1 in Equation (2)

cS

0.025 0.05 0.075 0.10 0.125 0.15 0.175 0.20 0.225 0.25
0.05 160.55 119.55 84.10 58.13 40.80 29.99 22.69 17.85 14.51 12.18

162.15 122.38 85.36 58.02 40.26 28.98 21.88 16.98 13.73 11.42
0.10 129.26 100.91 74.46 52.82 38.15 28.50 21.61 17.41 14.18 11.87

132.88 104.97 76.58 54.11 38.40 28.13 21.47 16.75 13.58 11.33
0.15 97.55 79.88 61.18 45.88 34.47 26.14 20.46 16.58 13.58 11.47

99.47 82.90 64.21 47.92 35.40 26.67 20.73 16.37 13.37 11.20
0.20 70.98 59.90 48.50 38.16 29.64 23.26 18.76 15.25 12.82 10.93

70.55 62.14 51.65 40.72 31.77 24.76 19.65 15.79 13.04 10.99
0.25 51.85 45.60 37.87 31.06 25.36 20.49 17.12 14.30 12.16 10.49

cI 50.57 46.46 40.38 34.00 27.74 22.49 18.29 15.02 12.58 10.70
0.30 37.88 34.82 30.27 25.82 21.58 18.25 15.36 13.08 11.28 9.90

36.97 34.86 31.78 27.97 23.86 20.03 16.76 14.17 11.99 10.34
0.35 29.33 27.07 24.40 21.25 18.44 15.83 13.73 11.99 10.54 9.28

27.97 26.83 25.16 22.86 20.26 17.60 15.22 13.15 11.35 9.93
0.40 23.00 21.78 19.80 17.72 15.74 13.83 12.25 10.85 9.66 8.72

21.69 21.10 20.14 18.73 17.16 15.46 13.74 12.12 10.65 9.46
0.45 18.34 17.54 16.42 15.07 13.74 12.33 11.05 9.91 9.02 8.15

17.34 17.00 16.48 15.69 14.64 13.52 12.28 11.08 9.95 8.96
0.50 15.19 14.70 13.89 12.97 11.93 11.02 9.88 9.11 8.32 7.63

14.26 14.07 13.77 13.25 12.63 11.85 10.98 10.09 9.23 8.40
ce

1.10 1.20 1.30 1.40 1.50 1.60 1.80 2.20 2.60 3.00
0.05 93.34 48.19 27.83 18.06 13.10 10.11 6.77 4.10 2.97 2.34

100.42 52.81 30.81 20.18 14.43 11.04 7.41 4.46 3.22 2.54
0.10 80.68 43.52 26.35 17.81 12.74 9.91 6.67 4.06 2.97 2.34

85.25 48.22 29.15 19.47 14.12 10.87 7.34 4.44 3.21 2.54
0.15 64.38 38.37 23.96 16.47 12.26 9.64 6.61 4.02 2.95 2.34

67.94 41.66 26.83 18.46 13.63 10.60 7.25 4.42 3.20 2.54
0.20 50.28 32.83 21.89 15.55 11.78 9.39 6.43 4.06 2.93 2.33

52.28 35.24 24.05 17.25 13.03 10.29 7.14 4.38 3.19 2.53
0.25 39.10 26.76 19.26 14.37 11.10 8.96 6.40 4.01 2.93 2.32

cI 39.94 29.41 21.29 15.91 12.35 9.93 6.98 4.35 3.18 2.53
0.30 30.57 22.85 16.98 13.05 10.49 8.51 6.16 3.92 2.90 2.31

30.85 24.31 18.64 14.55 11.57 9.49 6.82 4.31 3.16 2.52
0.35 23.95 19.03 14.90 11.87 9.70 8.13 5.99 3.89 2.88 2.31

24.43 20.22 16.33 13.19 10.77 9.02 6.64 4.25 3.14 2.51
0.40 19.97 16.30 13.30 10.97 9.10 7.74 5.87 3.84 2.85 2.31

19.60 16.96 14.29 11.95 10.04 8.56 6.45 4.20 3.13 2.50
0.45 16.30 13.92 11.79 10.02 8.53 7.24 5.61 3.80 2.86 2.29

16.14 14.42 12.61 10.85 9.32 8.07 6.23 4.14 3.11 2.49
0.50 13.93 12.09 10.57 9.10 7.92 6.89 5.46 3.71 2.83 2.27

13.50 12.43 11.11 9.83 8.62 7.62 6.00 4.07 3.08 2.48
ce

0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50
0.025 221.91 255.42 258.80 235.31 198.67 161.48 127.44 101.74 80.24 64.28

214.00 222.91 191.67 143.62 99.52 68.92 48.34 35.33 26.55 20.76
0.05 160.24 186.58 195.83 184.79 162.35 137.02 111.34 92.40 73.75 60.34

157.14 170.95 160.38 132.14 98.24 70.14 50.09 36.89 27.70 21.66
0.075 107.14 121.87 131.45 132.35 122.72 107.58 91.42 77.92 64.32 52.70

104.55 115.51 116.34 106.79 88.15 67.81 50.36 37.94 28.76 22.61
0.10 70.82 78.39 85.99 87.15 84.26 77.77 69.33 60.60 52.25 44.62

68.04 74.95 78.25 76.86 69.89 59.15 47.23 37.31 29.18 23.27
0.125 47.89 52.45 56.47 58.42 57.74 54.73 50.79 45.08 41.09 36.34

cS 45.24 49.09 51.76 52.70 50.80 46.57 40.56 34.07 28.15 23.16
0.15 33.94 36.63 38.86 39.67 40.11 39.18 37.26 34.20 31.80 28.79

(Continues)
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Table IV. Continued.

cS

31.36 33.35 34.87 35.70 35.73 34.59 32.08 28.80 25.26 21.73
0.175 25.06 26.92 27.40 28.40 28.64 28.12 27.34 26.22 24.60 22.87

23.19 24.24 25.05 25.57 25.78 25.49 24.57 22.97 21.23 19.17
0.20 19.16 20.17 20.97 21.50 21.68 21.48 20.69 20.36 19.41 18.25

17.70 18.25 18.74 19.15 19.35 19.29 18.85 18.20 17.27 16.21
0.225 15.37 16.04 16.41 16.75 16.94 16.78 16.73 16.09 15.63 14.99

14.12 14.41 14.68 14.87 14.97 14.93 14.75 14.47 14.05 13.51
0.25 12.60 13.02 13.28 13.49 13.59 13.47 13.43 13.20 12.82 12.51

11.65 11.82 11.95 12.02 12.08 12.11 12.04 11.92 11.71 11.41
ce

1.10 1.20 1.30 1.40 1.50 1.60 1.80 2.20 2.60 3.00
�0.025 95.83 48.62 27.94 18.46 13.25 9.99 6.75 4.08 2.95 2.33

102.10 54.03 31.22 20.40 14.59 11.11 7.46 4.46 3.21 2.54
�0.05 80.35 44.43 26.81 17.74 12.92 10.06 6.74 4.08 2.96 2.34

85.78 49.09 29.97 19.78 14.33 11.01 7.42 4.46 3.21 2.54
�0.075 63.10 38.32 24.76 16.93 12.45 9.74 6.62 4.05 2.95 2.34

67.07 42.26 27.27 18.76 13.83 10.77 7.34 4.44 3.21 2.54
�0.10 47.47 31.72 21.70 15.63 11.79 9.29 6.54 4.05 2.94 2.33

49.77 34.77 24.04 17.41 13.17 10.42 7.20 4.42 3.20 2.54
�0.125 36.31 26.16 18.88 14.29 11.20 8.99 6.39 4.01 2.92 2.33

cS 36.87 27.99 20.87 15.79 12.36 9.99 7.05 4.37 3.18 2.53
�0.15 27.92 21.35 16.44 12.89 10.32 8.66 6.23 3.97 2.91 2.31

27.57 22.46 18.01 14.26 11.46 9.48 6.85 4.32 3.16 2.53
�0.175 21.92 17.85 14.34 11.50 9.59 8.08 6.01 3.93 2.90 2.32

21.19 18.33 15.38 12.80 10.58 8.97 6.65 4.27 3.15 2.51
�0.20 17.46 14.80 12.40 10.43 8.82 7.58 5.79 3.84 2.86 2.31

16.78 15.06 13.25 11.38 9.75 8.42 6.39 4.21 3.13 2.51
�0.225 14.40 12.73 10.90 9.52 8.17 7.10 5.56 3.78 2.87 2.29

13.62 12.64 11.44 10.18 8.96 7.90 6.15 4.15 3.10 2.49
�0.25 12.18 10.91 9.68 8.63 7.56 6.67 5.39 3.70 2.80 2.28

11.38 10.80 10.04 9.14 8.24 7.36 5.89 4.08 3.07 2.48

Y. H. T. WANG AND L. HUWANG
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v2k et� tð Þ ¼ Op 1ð Þ; (9)

where v2k is the related magnitude of change in the parameters. The details of the proof are too technical and hence are omitted.
Interested readers can refer to Wang52 or acquire them on request.

In this article, we use simulations to evaluate the effectiveness of the change point estimate (Equation (8)). We set the change point
t= 100 and the repetitions of simulations equal to 50,000. Any repetition where an OC signal occurs before the (t+ 1)th profile was
discarded. The average (avg) and standard deviation (SD) of the estimate et for the shift in intercept, slope, and standard deviation of
the ZTW chart and the COM charts under Equation (2) for s2d ¼ 0:1 and 0.25 are tabulated in Table V, which also report the simulated
probabilities P0=Pr et ¼ tf g, P1=Prfjet� tj⩽1g, P3=Prfjet� tj⩽3g, and P5=Prfjet� tj⩽5g. These probabilities are used to assess certain
degree of the precision of the estimate et.

From Table V, we conclude that the estimateet performs fairly well for any shift size and gives similar results for both the ZTW chart
and the COM charts. The estimateethas better precision when the shift in parameter is large. Also, it seems thatetwould overestimate t
when the shift is small, whereas it would slightly underestimate t when the shift is large. These findings on the estimate et for the
simple linear Berkson profile are consistent with those of Zou et al.10 for the simple linear profile. The precision of et, as expected,
deteriorates when all the settings are the same except that s2d increases from 0.1 to 0.25.

After finding the location of the change point, it is also important to decide which parameters have changed in the profile. Kim
et al.3 proposed a combination of three EWMA charts for monitoring the simple linear profile and each chart monitors the correspond-
ing parameter. This approach makes the diagnosis of any profile change much easier than other approaches. However, as the chart
for monitoring the intercept or the slope has detected an OC signal, users will usually conceive that the corresponding parameter has
changed and disregard the possibility that the signal may have been caused by the parameter of standard deviation. As Reynolds and
Stoumbos53 pointed out, the control charts used as a diagnostic aids do not necessarily have to be the same control charts used to
decide when a signal triggers. Hawkins and Zamba41 used two parametric tests to decide if the shift results from the mean or from the
variance. Zou et al.10 used a parametric test method as an auxiliary tool to determine which parameters have shifted in a profile after
the chart has detected an OC signal. Following the same line, in this article, we also propose an auxiliary parametric test method to
determine which parameters have changed in a profile once the chart has detected a signal.
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 949–965



Table V. The average, standard deviation, and precision of change point estimates for the ZTW chart (first row) and the COM
charts (second row)

s2d=0.1 s2d=0.25

B0! B0 + cIse B0! B0 + cIse

cI etavg SDet P0 P1 P3 P5 cI etavg SDet P0 P1 P3 P5
0.40 103.44 15.89 0.11 0.23 0.39 0.50 0.4 105.62 20.20 0.08 0.18 0.32 0.42

102.76 16.40 0.11 0.23 0.40 0.51 104.94 20.74 0.08 0.18 0.32 0.42
0.80 99.38 8.15 0.34 0.56 0.77 0.87 0.8 99.48 9.51 0.27 0.47 0.69 0.80

99.15 8.89 0.34 0.57 0.77 0.86 99.20 10.14 0.27 0.48 0.69 0.80
1.20 99.32 5.70 0.56 0.79 0.92 0.96 1.2 99.07 6.97 0.47 0.70 0.87 0.93

99.20 6.22 0.56 0.79 0.92 0.95 98.93 7.58 0.47 0.70 0.87 0.93
1.60 99.54 4.11 0.73 0.90 0.96 0.98 1.6 99.27 5.48 0.63 0.84 0.94 0.96

99.45 4.73 0.73 0.90 0.96 0.97 99.18 5.73 0.64 0.84 0.94 0.96
2.00 99.71 3.00 0.84 0.95 0.98 0.99 2 99.52 3.93 0.76 0.91 0.97 0.98

99.66 3.41 0.85 0.95 0.98 0.98 99.45 4.39 0.76 0.91 0.96 0.98
B1! B1 + cSse B1! B1 + cSse

cS etavg SDet P0 P1 P3 P5 cS etavg SDet P0 P1 P3 P5
0.10 118.73 36.68 0.04 0.09 0.18 0.24 0.10 125.55 45.44 0.03 0.07 0.15 0.20

117.88 37.15 0.04 0.09 0.18 0.24 124.86 46.02 0.03 0.08 0.15 0.20
0.15 105.80 19.83 0.08 0.18 0.32 0.42 0.15 108.66 24.82 0.06 0.14 0.27 0.35

105.48 20.28 0.08 0.18 0.32 0.42 108.19 25.09 0.06 0.15 0.27 0.35
0.20 101.90 13.84 0.14 0.28 0.46 0.58 0.20 103.03 16.84 0.11 0.23 0.39 0.50

101.53 14.38 0.14 0.28 0.46 0.58 102.82 17.32 0.11 0.23 0.39 0.50
0.25 100.36 11.05 0.20 0.38 0.58 0.70 0.25 100.89 13.24 0.15 0.31 0.50 0.62

100.11 11.56 0.20 0.38 0.58 0.70 100.56 13.62 0.16 0.31 0.51 0.62
0.30 99.68 9.44 0.26 0.47 0.68 0.80 0.30 99.86 11.19 0.21 0.39 0.60 0.72

99.37 10.25 0.26 0.47 0.68 0.80 99.63 11.64 0.21 0.40 0.60 0.72
se! cese se! cese

ce etavg SDet P0 P1 P3 P5 ce etavg SDet P0 P1 P3 P5
1.4 102.01 13.90 0.13 0.28 0.47 0.59 1.4 105.91 19.55 0.08 0.18 0.33 0.43

101.80 14.21 0.14 0.28 0.47 0.59 105.33 19.82 0.08 0.19 0.34 0.44
1.8 99.53 7.94 0.34 0.57 0.79 0.88 1.8 100.00 9.55 0.24 0.45 0.67 0.78

99.58 7.86 0.35 0.58 0.79 0.88 99.95 9.58 0.25 0.46 0.67 0.79
2.2 99.51 5.84 0.51 0.75 0.91 0.95 2.2 99.46 7.16 0.40 0.64 0.84 0.91

99.56 5.67 0.52 0.76 0.91 0.95 99.50 7.10 0.41 0.65 0.84 0.91
2.6 99.66 4.41 0.63 0.85 0.95 0.97 2.6 99.51 5.66 0.52 0.76 0.91 0.95

99.71 3.98 0.64 0.85 0.95 0.97 99.55 5.57 0.53 0.77 0.92 0.96
3 99.75 3.48 0.72 0.90 0.97 0.98 3 99.65 4.44 0.62 0.84 0.95 0.97

99.75 3.52 0.72 0.91 0.97 0.98 99.68 4.23 0.63 0.85 0.95 0.97
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Assume that an OC signal has been detected at kth profile. After obtaining the change point estimate et in Equation (8), define

�B0 ¼ 1

n k � etð Þ
Xk
j¼etþ1

Xn
i¼1

yij; �B1 ¼ 1

k �et Xk
j¼etþ1

Xn
i¼1

x�i yij
Sxx

;

�s2 ¼ 1

n k � etð Þ � 2

Xk
j¼etþ1

Xn
i¼1

yij � �B0 � �B1x
�
i

� �2
;

and

�s2
e ¼ max 0; �s2 � �B

2
1s

2
d

n o
:

For an intercept change and a slope change, we used the t-test withn k �etð Þ � 2degrees of freedom, and the respective test statistics are

TI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n k � etð Þp

�B0 � B0
� �
�s

(10)

and
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TS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx k �etð Þp

�B1 � B1
� �

�s
(11)

For a change in s2e , we use the test statistic

Tse ¼
�s2
e � s2effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var̂ �s2

e

� �q
;

(12)

where

Var̂ �s2
e

� � ¼ 2 s2e þ �B
2
1s

2
d

� �2
n k �etð Þ þ

4�B
2
1s

4
d s2e þ �B

2
1s

2
d

� �
Sxx k � etð Þ :

Here, we substitute �B1 for B1 in Var̂ �s2
e

� �
so that a change in B1 will not affect the result for testing a change in s2e . It is easy to show that

Tse has an asymptotic standard normal distribution under the condition that Sxx=n ! S�xx < 1, and there is no change in s2e .
In this article, we present the diagnostic ability of identifying OC parameters using the aforementioned hypothesis test method

with a= 0.05 for the ZTW chart and the COM charts. The results are obtained using 50,000 simulations and are tabulated in Table VI.
The three digits in the second row of the table indicate various combinations of parameter shifts in the intercept B0, slope B1, and
standard deviation se. For example, the three digits ‘100’ represent the intercept, slope, and standard deviation, where the first digit
‘1’ means a shift in the intercept B0 and the other two digits ‘00’ mean no change in the slope B1 and standard deviation se. The
estimated probabilities of events occurring at ‘100’, ‘010’, and so on for various shifts are reported. The larger probabilities imply
the better diagnostic ability of the parametric tests for the control charts.

Table VI shows that for a single shift in the parameter, except for few cases when cI= cS= 0, the proposed hypothesis test method is
more accurate for the COM charts than for the ZTW chart. For simultaneous shifts in the intercept and slope, the proposed hypothesis
test method is not very effective for both the ZTW chart and the COM charts because if there is a larger degree of shift in one of the
two parameters, the test method tends to indicate that there is only one parameter has changed. This phenomenon is even more
serious for simultaneous shifts in three parameters. Overall, the proposed hypothesis test method is more effective for the COM charts
than for the ZTW chart in terms of diagnostic ability.

It should be noted that the proposed hypothesis test statistics do not exactly have the given null distributions as the process is in
control because the statistics are derived on the basis of the condition that the control charts have detected an OC signal and a
change point estimate have been obtained. In addition, the efficiency of the hypothesis test method depends on when the control
chart has detected an OC signal and the accuracy of the estimate of the change point. Therefore, although this diagnostic method is
useful in many situations, users still have to take engineering/practical knowledge about the profile into account after they have
obtained the results from statistical diagnostic analysis.
9
5
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5. An illustrative example

In this section, we use an example of Montgomery54 (p. 477) to illustrate the applicability and the implementation of the proposed
methodology. In a semiconductor manufacturing process, during the etch step, a wafer is put in a chamber and exposed to gases
that etch away photoresist, thus creating the required pattern for that layer of the chips. The quality of the process is characterized
by the relationship between the measured pressure (psi) and the flow of gases (cm3) in the chamber, controlled by a mass flow con-
troller (MFC). According to physical principles, if an MFC is in control, then the measured pressure y is approximately a linear function
of the flow of gases x in the chamber. However, because of random fluctuations in gases, it is likely that the set point value for flow x
(expressed as a fraction of maximum flow) is different from the actual value of flow x in the chamber. If the difference between the set
point value for flow x and the actual value of flow x in the chamber is too large to be disregarded, that is, x is equal to x plus a random
error d, then the simple linear Berkson Equation (1) should be used instead of the simple linear model. The original data that contain
the measured pressure y in psi and the set point x for flow in cubic centimeters are presented in Figure 1. In the example, because the
book does not include the values of data set, we respectively partition both the pressure and the flow coordinates of Figure 1 into a
grid of distinguishable values to collect the approximate integer values of the pressure and flow presented in Table VII. Here, we
assume that the values of flow are the set point values for flow controlled by the experimenter, which are appreciably different from
the actual values of flow in the chamber, and as a result we can assume a simple linear Berkson model to illustrate our proposed
approach. Fitting the simple linear Equation (2) for the values of pressure and flow (coded so that the average value is 0), we have
B0 = 56.2, B1 = 0.22, and s2 ¼ s2e þ B21s

2
d ¼ 3:94. Further, we assume s2d ¼ 0:25s2e ¼ 0:97, which indicates that there is an appreciable

difference between the set point value for flow and the actual value of flow in the chamber. As a result, we have the following in-
control simple linear Berkson model

y ¼ 56:2þ 0:22xþ e;
x ¼ xþ d;

(13)

where e�N(0, 3.89), d�N(0, 0.97), and e and d are independent. To start a Phase II monitoring, we choose the IC ARL = 200 and the
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 949–965



Table VI. Diagnostic abilities of the parametric test method for shifts in B0, B1, and s2e using the ZTW chart (first row) and the COM
charts (second row)

s2d=0.1

cI cS ce 100 010 001 110 101 011 111 000
0.4 0 1 0.68 0.03 0.03 0.16 0.07 0.00 0.01 0.01

0.74 0.02 0.02 0.13 0.07 0.00 0.01 0.02
0.8 0 1 0.77 0.01 0.02 0.13 0.05 0.00 0.01 0.01

0.79 0.00 0.01 0.11 0.06 0.00 0.01 0.01
0 0.1 1 0.07 0.58 0.05 0.18 0.01 0.07 0.02 0.02

0.07 0.65 0.04 0.13 0.01 0.07 0.01 0.02
0 0.15 1 0.04 0.64 0.04 0.17 0.00 0.07 0.01 0.02

0.03 0.72 0.03 0.12 0.00 0.07 0.01 0.02
0 0 0.4 0.00 0.00 0.82 0.00 0.08 0.08 0.01 0.00

0.00 0.00 0.80 0.00 0.09 0.09 0.01 0.00
0 0 0.7 0.01 0.01 0.77 0.01 0.09 0.08 0.02 0.00

0.01 0.01 0.75 0.01 0.10 0.10 0.02 0.01
0 0 1.6 0.06 0.06 0.70 0.03 0.06 0.06 0.00 0.02

0.06 0.06 0.70 0.02 0.07 0.07 0.00 0.01
0 0 2.8 0.03 0.03 0.82 0.02 0.04 0.04 0.00 0.03

0.03 0.03 0.81 0.02 0.04 0.04 0.00 0.02
0.6 0.15 1 0.44 0.07 0.03 0.38 0.04 0.01 0.02 0.02

0.47 0.06 0.01 0.38 0.04 0.00 0.02 0.01
0.6 0.15 1.6 0.17 0.08 0.41 0.09 0.15 0.04 0.01 0.04

0.17 0.08 0.35 0.09 0.21 0.06 0.02 0.03
0.4 0.15 2 0.06 0.07 0.67 0.04 0.08 0.05 0.00 0.04

0.06 0.07 0.64 0.03 0.10 0.07 0.01 0.02
s2d=0.25

cI cS ce 100 010 001 110 101 011 111 000
0.4 0 1 0.67 0.03 0.03 0.17 0.07 0.01 0.01 0.01

0.73 0.03 0.02 0.12 0.07 0.00 0.01 0.01
0.8 0 1 0.76 0.01 0.02 0.13 0.05 0.00 0.00 0.01

0.79 0.01 0.01 0.11 0.05 0.00 0.01 0.01
0 0.1 1 0.09 0.55 0.07 0.18 0.01 0.06 0.01 0.03

0.10 0.62 0.06 0.12 0.01 0.06 0.01 0.02
0 0.15 1 0.06 0.63 0.05 0.16 0.01 0.05 0.01 0.03

0.05 0.70 0.04 0.12 0.00 0.05 0.01 0.02
0 0 0.4 0.01 0.01 0.80 0.01 0.08 0.07 0.01 0.01

0.01 0.01 0.77 0.01 0.09 0.08 0.01 0.01
0 0 0.7 0.03 0.03 0.70 0.04 0.09 0.08 0.02 0.01

0.03 0.03 0.71 0.01 0.09 0.09 0.01 0.02
0 0 1.6 0.07 0.07 0.65 0.04 0.06 0.07 0.00 0.03

0.07 0.07 0.66 0.03 0.07 0.07 0.01 0.02
0 0 2.8 0.04 0.04 0.79 0.02 0.04 0.04 0.00 0.03

0.03 0.04 0.79 0.02 0.05 0.05 0.00 0.02
0.6 0.15 1 0.46 0.09 0.03 0.35 0.03 0.00 0.01 0.03

0.48 0.08 0.02 0.34 0.04 0.00 0.02 0.02
0.6 0.15 1.6 0.22 0.11 0.34 0.10 0.14 0.03 0.00 0.05

0.22 0.11 0.28 0.11 0.20 0.04 0.02 0.03
0.4 0.15 2 0.08 0.09 0.61 0.04 0.08 0.04 0.01 0.05

0.08 0.09 0.59 0.04 0.10 0.06 0.01 0.03
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smoothing constant l=0.2 for the proposed COM control charts. For the first five in-control profiles, we generate profile data from
Equation (13) with sample size n=20 and xi equal to the set point values for flow in Table VII. After the fifth profile, we add a shift
of B1 on the in-control model from 0.22 to 0.23 and generate the OC profiles through Monte Carlo simulations. The simulated yij
for i= 1,⋯, 20 and j= 1,⋯, 12 are tabulated in Table VIII.

Figure 2 gives the COM charts for monitoring these in-control and OC sample profiles, which include EWMAI for the change in B0,
EWMAS for the change in B1, EWMAþ

c for the increase in se, and EWMA�
c for the decrease in se. Note that the magnitude of shift in

these profiles is usually small and difficult to identify by bare eyes. Thus, we need an effective control charting scheme to discover
the slight change. From Figure 2, we observe that the COM charts trigger a signal quickly at the 12th profile. Using the diagnostic
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 949–965
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Figure 1. The measured pressure for an MFC is expressed as a function of the set point x for flow.

Table VII. Approximate values of the data set for the MFC example of Montgomery (2009)

Pressure y (psi) 42 38 45 42 47 45 50 52 56 60

Flow x (cm3) 28 32 40 43 55 64 68 83 92 102
Pressure y (psi) 55 59 60 64 62 66 70 67 70 74
Flow x (cm3) 105 112 123 128 135 144 154 160 166 174

Table VIII. Data for illustrative example with a shift in B1 after the fifth profile

j 0 1 2 3 4 5 6 7 8 9 10 11 12

37.13 42.95 43.56 39.66 35.33 37.42 40.19 39.08 37.32 42.18 35.90 39.47
39.64 41.04 40.11 43.21 42.76 40.23 38.77 43.33 37.61 40.07 41.57 39.58
43.55 42.49 43.21 42.38 43.20 40.63 40.61 44.80 42.14 42.79 42.20 41.82
43.63 45.27 44.77 40.79 43.02 44.08 42.90 40.43 44.44 44.91 42.05 43.78
47.00 47.43 41.88 44.36 50.71 45.65 45.50 48.64 45.83 44.86 46.20 47.67
49.46 47.00 46.37 46.18 49.64 47.72 45.25 45.50 48.65 48.58 47.98 48.18
48.10 46.84 48.67 49.41 49.15 46.83 45.69 47.70 48.05 49.48 48.62 44.40
50.50 52.56 52.23 54.12 50.58 52.86 52.30 50.65 52.76 51.79 53.61 55.04

yij 54.68 54.70 55.04 52.06 52.84 55.03 51.48 56.40 57.69 53.46 55.35 55.87
56.19 54.94 54.11 56.85 57.21 57.09 56.94 54.46 56.47 59.23 54.64 54.82
55.89 58.21 60.39 59.43 55.23 55.57 60.11 56.85 57.48 60.67 57.99 59.84
57.59 53.44 58.44 57.93 59.98 58.37 57.79 61.33 60.92 59.40 56.76 62.25
58.90 59.24 61.65 60.54 63.79 60.01 59.10 66.11 63.29 59.41 60.34 59.51
63.06 66.24 61.94 58.71 62.91 63.45 61.54 62.66 61.31 62.88 60.88 63.19
62.59 61.15 63.62 66.90 61.65 63.66 65.90 64.87 63.83 64.33 64.12 69.59
65.84 65.97 68.27 72.14 62.23 63.31 66.40 67.15 65.81 69.31 67.97 64.56
71.44 69.02 67.94 65.54 67.13 71.79 66.63 68.45 67.84 68.48 68.47 68.03
70.14 69.08 69.47 69.86 67.52 71.25 68.11 68.41 69.90 70.32 66.91 71.39
71.14 68.21 73.37 71.51 70.17 72.29 70.08 69.61 74.46 73.59 70.42 71.14
73.52 76.02 70.38 71.90 71.88 75.59 71.38 71.17 73.31 69.30 74.39 75.21

lr 10.81 8.58 10.47 10.59 10.20 14.87 8.97 9.03 10.58 5.30 4.96 5.61
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method, we proposed for the simple linear Berkson model; we have the values of lr(20j, 12� 20), j=0, 1,⋯, 11, tabulated in Table VIII.
From the table, we see that lr(20j, 12� 20) attains its maximum value at j=5 with lr(20� 5, 12� 20) = 14.87. Thus, the change point
estimate et ¼ 5 in this case, which is identical to the actual change point.

After obtaining the change point estimate et, we compute the test statistics in Equations (10), (11), and (12) to obtain TI= 0.23,
TS= 3.83, and Tse ¼ �1:43 . Considering the significance level a= 0.05, we see that |TI| = 0.23< t0.025(138) = 1.98, |TS| = 3.83> t0.025
(138) = 1.98, and Tsej j ¼ 1:43 < z0:025 ¼ 1:96, where ta(v) and za are the respective a upper quantiles of the t distribution with v
degrees of freedom and of the standard normal distribution. From this, we conclude that there is a slope shift after the fifth profile.
After discovering the OC parameter, the user may try to find the assignable causes and repair the process. When the process is
adjusted back to normal condition, the monitoring procedure can be restarted again.
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 949–965
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Figure 2. The COM charts for monitoring the intercept, slope, and standard deviation.
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6. Conclusion

In this article, by making use of the transformed simple linear profile, we have studied three control charting schemes for monitoring
a simple linear Berkson profile. These charting schemes can be generalized to monitor a multiple linear Berkson profile, which has
several explanatory variables and different identifiability conditions. According to the performance comparisons, the ZTW chart
and the COM charts are the two preferred schemes among the three in terms of the OC ARL. We have also given a systematic
diagnostic method to estimate the change point and to identify which parameters have changed in the profile. On the basis of
the simulation results of comparing the diagnostic ability of indicating OC parameters between the ZTW chart and the COM charts,
the COM charts give slightly better results. As illustrated by the MFC example, the COM control charts and its corresponding diagnostic
approach can be implemented in industrial practice under the situation that the quality of a process can be represented by a simple
linear Berkson profile.
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Appendix

Proof of (8)

Suppose that the control chart has detected an OC signal at the kth profile, the logarithm of the likelihood function for the k profiles is
defined by

l ¼ � 1

2

Xk
j¼1

nln 2p s2ej þ B21js
2
d

� �h i
þ
Xn
i¼1

yij � B0j � B1jx�i
� �2

s2ej þ B21js
2
d

( )
:

If all the k profiles are collected under in-control conditions, the logarithm of the likelihood function is equal to

l0 ¼ � 1

2
knln 2p s2e þ B21s

2
d

� �� �þXk
j¼1

Xn
i¼1

yij � B0 � B1x�i
� �2

s2e þ B21s
2
d

( )
:

Under the condition that a sustained change occurs after the tth profile, the corresponding logarithm of likelihood is
given by
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2012, 28 949–965
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l1 ¼ � 1

2
tnln 2p s2e þ B21s

2
d

� �� �þXt
j¼1

Xn
i¼1

yij � B0 � B1x�i
� �2

s2e þ B21s
2
d

( )

� 1

2
k � tð Þnln 2p s2ec þ B21cs

2
d

� �� �þ Xk
j¼tþ1

Xn
i¼1

yij � B0c � B1cx�i
� �2

s2ec þ B21cs
2
d

( )
;

where B0c, B1c, and s2ec, respectively, represent the corresponding parameters after the change. Taking the partial derivatives of l1 with
respect to B0c, B1c, and s2ec , respectively, and solving the equations @l1

@B0c
¼ @l1

@B1c
¼ @l1

@s2ec
¼ 0, we have

B̂0 t;kð Þ ¼ 1

n k � tð Þ
Xk
j¼tþ1

Xn
i¼1

yij 	 ��y ;

B̂1 t;kð Þ ¼ 1

k � tð Þ
Xk
j¼tþ1

Xn
i¼1

x�i yij
Sxx

;

and

ŝ2
e t;kð Þ ¼

Pk
j¼tþ1

Pn
i¼1 yij � B̂0 t;kð Þ � B̂1 t;kð Þx�i
� �2
n k � tð Þ � B̂1 t;kð Þ

2 s2d:

Under the condition ŝe t;kð Þ
2 ⩾0, then B̂0 t;kð Þ, B̂1 t;kð Þ, and ŝe t;kð Þ

2 are the maximum likelihood estimates of B0c, B1c and s2ec respectively.

On the other hand, if ŝe t;kð Þ
2 < 0, then ŝe t;kð Þ

2 is not the maximum likelihood estimate of s2ec because of the restriction s2ec⩾0. From the

partial derivative of l1 with respect to s2ec , we have

@l1
@s2ec

¼
Pk

j¼tþ1

Pn
i¼1 yij � B0c � B1cx�i
� �2

= n k � tð Þ½ 
 � s2ec þ B21cs
2
d

� �
2 s2ec þ B21cs

2
d

� �2
= n k � tð Þ½ 


:

If the condition
Pk

j¼tþ1

Pn
i¼1 yij � B0c � B1cx�i
� �2

= n k � tð Þ½ 
 � B21cs
2
d < 0 holds, then @l1

@s2ec
< 0. As a result, the logarithm of likelihood l1

is a decreasing function in s2ec and the maximum of l1 on the region s2ec⩾0 will occur at s2ec ¼ 0: Furthermore, taking the partial

derivative of l1 with respect to B0c and solving @l1
@B0c

¼ 0, we obtaineB0 ¼ B̂0 t;kð Þ ¼ ��y. Finally, taking the partial derivative of l1 with respect

to B1c and substituting B0c ¼ ��y and s2ec ¼ 0 in @l1
@B1c

¼ 0, we have

� n k � tð Þ
B1c

þ
Pk

j¼tþ1

Pn
i¼1 yij � ��y � B1cx�i
� �

x�i
B21cs

2
d

þ
Pk

j¼tþ1

Pn
i¼1 yij � ��y � B1cx�i
� �2
B31cs

2
d

¼ 0:

After some simplification, the above equation is equivalent to

B21cs
2
d þ B1ceSxy � eSyy ¼ 0; (A1)

where

~Sxy ¼
Pk

j¼tþ1

Pn
i¼1x

�
i yij � ��y
� �

n k � tð Þ ;~Syy ¼
Pk

j¼tþ1

Pn
i¼1 yij � ��y
� �2

n k � tð Þ :

As a result, under this condition the maximum likelihood estimate of B1c is one of the two solutions of (A1)

~B
�
1 ¼

�~Sxy �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sxy2 þ 4s2d~Syy

q
2s2d

:

Combining the results for ŝ2
e t;kð Þ⩾0 and ŝ2

e t;kð Þ < 0, the maximum likelihood estimates of B0c, B1c, and s2ec under the condition that a
sustained change occurs after the tth profile are given by

~B0 ¼ ��y ;

~B1 ¼
B̂1 t;kð Þ; ŝ2

e t;kð Þ⩾0;
~B
þ
1 ; ŝ2

e t;kð Þ < 0 and l1 ~B0; ~B
þ
1 ; 0

� �
⩾l1 ~B0; ~B

�
1 ; 0

� �
;

~B
�
1 ; ŝ2

e t;kð Þ < 0 and l1 ~B0; ~B
þ
1 ; 0

� �
< l1 ~B0; ~B

�
1 ; 0

� �
;

8>><>>: (A2)
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~s2e ¼ max 0; ŝ2
e t;kð Þ

� �
:

Substituting eB0, eB1, and es2e , respectively, for B0c, B1c, and s2ec in l1, we have

l1 ¼ � 1

2
tnln 2p s2e þ B21s

2
d

� �� �þXt

j¼1

Xn

i¼1

yij � B0 � B1x�i
� �2

s2e þ B21s
2
d

( )

� 1

2
k � tð Þnln 2p es2e þ eB21s2d� �h i

þ
Xk

j¼tþ1

Xn

i¼1

yij � eB0 � eB1x�i� �2
es2e þ eB21s2d

8><>:
9>=>;:

Consequently, the generalized likelihood ratio statistic is given by

lr tn; knð Þ ¼ �2 l0 � l1ð Þ

¼ ln
s2e þ B21s

2
des2e þ eB21s2d

 ! k�tð Þn Pk
j¼tþ1

Pn
i¼1

yij � B0 � B1x�i
� �2

s2e þ B21s
2
d

�
Xk
j¼tþ1

Xn
i¼1

yij � eB0 � eB1x�i� �2
es2e þ eB21s2d

8><>:
9>=>;:
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